Mouth Region Localization Method Based on Gaussian Mixture Model
نویسندگان
چکیده
This paper presents a new mouth region localization method which uses the Gaussian mixture model (GMM) of feature vectors extracted from mouth region images. The discrete cosine transformation (DCT) and principle component analysis (PCA) based feature vectors are evaluated in mouth localization experiments. The new method is suitable for audio-visual speech recognition. This paper also introduces a new database which is available for audio visual processing. The experimental results show that the proposed system has high accuracy for mouth region localization (more than 95 %) even if the tracking results of preceding frames are unavailable.
منابع مشابه
Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty
In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملA Robust Coarse-to-Fine Method for Pupil Localization in Non-ideal Eye Images
Pupil localization is a very important preprocessing step in many machine vision applications. Accurate and robust pupil localization especially in non-ideal eye images (such as images with defocusing, motion blur, occlusion etc.) is a challenging task. In this paper, a detailed method to solve this problem is proposed. This method is implemented in three main steps: first, segment the rough pu...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملA Dynamic Indoor WLAN Localization System
As positioning technology is an important foundation of the Internet of Things, a dynamic indoor WLAN localization system is proposed in this paper. This paper mainly concentrates on the design and implementation of the WiMap-a dynamic indoor WLAN localization system, which employs grid-based localization method using RSS (received signal strength). To achieve high localization accuracy and low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006